All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Kernel Function Tuning for Single-Layer Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00493061" target="_blank" >RIV/67985807:_____/18:00493061 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.ijmlc.org/index.php?m=content&c=index&a=show&catid=79&id=831" target="_blank" >http://www.ijmlc.org/index.php?m=content&c=index&a=show&catid=79&id=831</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Kernel Function Tuning for Single-Layer Neural Networks

  • Original language description

    This paper describes an unified learning framework for kernel networks with one hidden layer, including models like radial basis function networks and regularization networks. The learning procedure consists of meta-parameter tuning wrapping the standard parameter optimization part. Several variants of learning are described and tested on various classification and regression problems. It is shown that meta-learning can improve the performance of models for the price of higher time complexity. © 2018, International Association of Computer Science and Information Technology.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA15-18108S" target="_blank" >GA15-18108S: Model complexity of neural, radial, and kernel networks</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Machine Learning and Computing

  • ISSN

    2010-3700

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    7

  • Pages from-to

    354-360

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85051862837