All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Semi-supervised and Active Learning in Video Scene Classification from Statistical Features

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00493293" target="_blank" >RIV/67985807:_____/18:00493293 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.ies.uni-kassel.de/p/ial2018/ialatecml2018.pdf" target="_blank" >http://www.ies.uni-kassel.de/p/ial2018/ialatecml2018.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Semi-supervised and Active Learning in Video Scene Classification from Statistical Features

  • Original language description

    PUBLISHED: ECML PKDD 2018: Workshop on Interactive Adaptive Learning. Proceedings. Dublin, 2018 - (Krempl, G., Lemaire, V., Kottke, D., Calma, A., Holzinger, A., Polikar, R., Sick, B.), s. 24-35. [ECML PKDD 2018: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Dublin (IE), 10.09.2018-14.09.2018]. Grant CEP: GA ČR(CZ) GA18-18080S. ABSTRACT: In multimedia classification, the background is usually considered an unwanted part of input data and is often modeled only to be removed in later processing. Contrary to that, we believe that a background model (i.e., the scene in which the picture or video shot is taken) should be included as an essential feature for both indexing and followup content processing. Information about image background, however, is not usually the main target in the labeling process and the number of annotated samples is very limited. Therefore, we propose to use a combination of semi-supervised and active learning to improve the performance of our scene classifier, specifically a combination of self-training with uncertainty sampling. As a result, we utilize a combination of statistical features extractor, a feed-forward neural network and support vector machine classifier, which consistently achieves higher accuracy on less diverse data. With the proposed approach, we are currently able to achieve precision over 80% on a dataset trained on a single series of a popular TV show.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-18080S" target="_blank" >GA18-18080S: Fusion-Based Knowledge Discovery in Human Activity Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů