Term Negation in First Order logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00505127" target="_blank" >RIV/67985807:_____/19:00505127 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15210/19:73600912
Result on the web
<a href="http://dx.doi.org/10.2143/LEA.247.0.3287264" target="_blank" >http://dx.doi.org/10.2143/LEA.247.0.3287264</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2143/LEA.247.0.3287264" target="_blank" >10.2143/LEA.247.0.3287264</a>
Alternative languages
Result language
angličtina
Original language name
Term Negation in First Order logic
Original language description
We provide a formalization of Aristotelian term negation within an extension of classical first-order logic by two predicate operators. The operators represent the range of application of a predicate and the term negation of a predicate, respectively. We discuss several classes of models for the language characterised by various assumptions concerning the interaction between range of application, term negation and Boolean complementation. We show that the discussed classes can be defined by sets of formulas. In our intended class of models, term negation of $P$ corresponds to the complement of $P$ relative to the range of application of $P$. It is an established fact about term negation that it does not satisfy the the principle of Conversion by Contraposition. This seems to be in conflict with the thesis, put forward by Lenzen and Berto, that contraposition is a minimal requirement for an operator to be a proper negation. We show that the arguments put forward in support of this thesis do not apply to term negation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Logique et Analyse
ISSN
0024-5836
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
247
Country of publishing house
BE - BELGIUM
Number of pages
20
Pages from-to
265-284
UT code for WoS article
000518710900003
EID of the result in the Scopus database
—