Fast Forecasting of VGF Crystal Growth Process by Dynamic Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00505764" target="_blank" >RIV/67985807:_____/19:00505764 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jcrysgro.2019.05.022" target="_blank" >http://dx.doi.org/10.1016/j.jcrysgro.2019.05.022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcrysgro.2019.05.022" target="_blank" >10.1016/j.jcrysgro.2019.05.022</a>
Alternative languages
Result language
angličtina
Original language name
Fast Forecasting of VGF Crystal Growth Process by Dynamic Neural Networks
Original language description
Fast forecasting of process variables during the crystal growth is a critical step in a process development, optimization and control. The common approach based on computational fluid dynamics modeling is accurate, but too slow to deliver results in real time. Here we conducted a feasibility study on the application of dynamic artificial neural networks in the forecasting of VGF-GaAs crystal growth cooling program. Particularly, we studied various Nonlinear-AutoRegressive artificial neural networks with eXogenous inputs (NARX) with 2 external inputs and 6 outputs derived from 500 transient data sets. Data were generated by transient 1D CFD simulation. The first encouraging results are presented and the pros and cons of the application of dynamic artificial neural networks for the fast predictions of VGF process parameters are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GA18-18080S" target="_blank" >GA18-18080S: Fusion-Based Knowledge Discovery in Human Activity Data</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Crystal Growth
ISSN
0022-0248
e-ISSN
—
Volume of the periodical
521
Issue of the periodical within the volume
1 September
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
9-14
UT code for WoS article
000470831700002
EID of the result in the Scopus database
2-s2.0-85066255424