Numerical Solution of Generalized Minimax Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00522789" target="_blank" >RIV/67985807:_____/20:00522789 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-34910-3" target="_blank" >https://doi.org/10.1007/978-3-030-34910-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-34910-3_11" target="_blank" >10.1007/978-3-030-34910-3_11</a>
Alternative languages
Result language
angličtina
Original language name
Numerical Solution of Generalized Minimax Problems
Original language description
This contribution contains the description and investigation of three numerical methods for solving generalized minimax problems. These problems consists in the minimization of nonsmooth functions which are compositions of special smooth convex functions with maxima of smooth functions. The most important functions of this type are the sums of maxima of smooth functions. Section 11.2 is devoted to primal interior point methods which use solutions of nonlinear equations for obtaining minimax vectors. Section 11.3 contains investigation of smoothing methods, based on using exponential smoothing terms. Section 11.4 contains short description of primal-dual interior point methods based on transformation of generalized minimax problems to general nonlinear programming problems. Finally the last section contains results of numerical experiments.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Numerical Nonsmooth Optimization
ISBN
978-3-030-34909-7
Number of pages of the result
52
Pages from-to
363-414
Number of pages of the book
698
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—