All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximative Compactness of Linear Combinations of Characteristic Functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00524108" target="_blank" >RIV/67985807:_____/20:00524108 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jat.2020.105435" target="_blank" >http://dx.doi.org/10.1016/j.jat.2020.105435</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jat.2020.105435" target="_blank" >10.1016/j.jat.2020.105435</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximative Compactness of Linear Combinations of Characteristic Functions

  • Original language description

    Best approximation by the set of all n-fold linear combinations of a family of characteristic functions of measurable subsets is investigated. Such combinations generalize Heaviside-type neural networks. Existence of best approximation is studied in terms of approximative compactness, which requires convergence of distance-minimizing sequences.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Approximation Theory

  • ISSN

    0021-9045

  • e-ISSN

  • Volume of the periodical

    257

  • Issue of the periodical within the volume

    September 2020

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    105435

  • UT code for WoS article

    000557237100002

  • EID of the result in the Scopus database

    2-s2.0-85084967455