Approximative Compactness of Linear Combinations of Characteristic Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00524108" target="_blank" >RIV/67985807:_____/20:00524108 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jat.2020.105435" target="_blank" >http://dx.doi.org/10.1016/j.jat.2020.105435</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jat.2020.105435" target="_blank" >10.1016/j.jat.2020.105435</a>
Alternative languages
Result language
angličtina
Original language name
Approximative Compactness of Linear Combinations of Characteristic Functions
Original language description
Best approximation by the set of all n-fold linear combinations of a family of characteristic functions of measurable subsets is investigated. Such combinations generalize Heaviside-type neural networks. Existence of best approximation is studied in terms of approximative compactness, which requires convergence of distance-minimizing sequences.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Approximation Theory
ISSN
0021-9045
e-ISSN
—
Volume of the periodical
257
Issue of the periodical within the volume
September 2020
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
105435
UT code for WoS article
000557237100002
EID of the result in the Scopus database
2-s2.0-85084967455