All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Partial sum of eigenvalues of random graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00524781" target="_blank" >RIV/67985807:_____/20:00524781 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0309071" target="_blank" >http://hdl.handle.net/11104/0309071</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21136/AM.2020.0352-19" target="_blank" >10.21136/AM.2020.0352-19</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Partial sum of eigenvalues of random graphs

  • Original language description

    Let G be a graph on n vertices and let lambda(1) >= lambda(2) >= ... >= lambda(n) be the eigenvalues of its adjacency matrix. For random graphs we investigate the sum of eigenvalues s(k)= Sigma(k)(i=1)lambda(i) for 1 <= k <= n, and show that a typical graph has S-k <= (e(G) +k(2))/(0.99n)(1/2), where e(G) is the number of edges of G. We also show bounds for the sum of eigenvalues within a given range in terms of the number of edges. The approach for the proofs was first used in Rocha (2020) to bound the partial sum of eigenvalues of the Laplacian matrix.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applications of Mathematics

  • ISSN

    0862-7940

  • e-ISSN

  • Volume of the periodical

    65

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    10

  • Pages from-to

    609-618

  • UT code for WoS article

    000576794600005

  • EID of the result in the Scopus database

    2-s2.0-85092150018