Partial sum of eigenvalues of random graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00524781" target="_blank" >RIV/67985807:_____/20:00524781 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0309071" target="_blank" >http://hdl.handle.net/11104/0309071</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2020.0352-19" target="_blank" >10.21136/AM.2020.0352-19</a>
Alternative languages
Result language
angličtina
Original language name
Partial sum of eigenvalues of random graphs
Original language description
Let G be a graph on n vertices and let lambda(1) >= lambda(2) >= ... >= lambda(n) be the eigenvalues of its adjacency matrix. For random graphs we investigate the sum of eigenvalues s(k)= Sigma(k)(i=1)lambda(i) for 1 <= k <= n, and show that a typical graph has S-k <= (e(G) +k(2))/(0.99n)(1/2), where e(G) is the number of edges of G. We also show bounds for the sum of eigenvalues within a given range in terms of the number of edges. The approach for the proofs was first used in Rocha (2020) to bound the partial sum of eigenvalues of the Laplacian matrix.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
5
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
609-618
UT code for WoS article
000576794600005
EID of the result in the Scopus database
2-s2.0-85092150018