Assessment of Surrogate Model Settings Using Landscape Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00533901" target="_blank" >RIV/67985807:_____/20:00533901 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-2718/paper20.pdf" target="_blank" >http://ceur-ws.org/Vol-2718/paper20.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Assessment of Surrogate Model Settings Using Landscape Analysis
Original language description
This work in progress concerns assessment of surrogate model settings for expensive black-box optimization. The assessment is performed in the context of Gaussian process models used in the Doubly Trained Surrogate (DTS) variant of the state-of-the-art black-box optimizer, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). This work focuses on the connection between Gaussian process surrogate model predictive accuracy and an essential model hyper-parameter – the covariance function. The performance of DTS-CMA-ES is related to the results of landscape analysis of the objective function. To this end various classification and regression methods are used, proposed in the traditional framework for algorithm selection by Rice. Several single-label classification, multi-label classification, and regression methods are experimentally evaluated on data from DTS-CMAES runs on the noiseless benchmark functions from the COCO platform for comparing continuous optimizers in black-box settings.n
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-18080S" target="_blank" >GA18-18080S: Fusion-Based Knowledge Discovery in Human Activity Data</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 20th Conference Information Technologies - Applications and Theory
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
9
Pages from-to
81-89
Publisher name
Technical University & CreateSpace Independent Publishing
Place of publication
Aachen
Event location
Oravská Lesná
Event date
Sep 18, 2020
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—