All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Assessment of Surrogate Model Settings Using Landscape Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00533901" target="_blank" >RIV/67985807:_____/20:00533901 - isvavai.cz</a>

  • Result on the web

    <a href="http://ceur-ws.org/Vol-2718/paper20.pdf" target="_blank" >http://ceur-ws.org/Vol-2718/paper20.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Assessment of Surrogate Model Settings Using Landscape Analysis

  • Original language description

    This work in progress concerns assessment of surrogate model settings for expensive black-box optimization. The assessment is performed in the context of Gaussian process models used in the Doubly Trained Surrogate (DTS) variant of the state-of-the-art black-box optimizer, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). This work focuses on the connection between Gaussian process surrogate model predictive accuracy and an essential model hyper-parameter – the covariance function. The performance of DTS-CMA-ES is related to the results of landscape analysis of the objective function. To this end various classification and regression methods are used, proposed in the traditional framework for algorithm selection by Rice. Several single-label classification, multi-label classification, and regression methods are experimentally evaluated on data from DTS-CMAES runs on the noiseless benchmark functions from the COCO platform for comparing continuous optimizers in black-box settings.n

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-18080S" target="_blank" >GA18-18080S: Fusion-Based Knowledge Discovery in Human Activity Data</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 20th Conference Information Technologies - Applications and Theory

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    81-89

  • Publisher name

    Technical University & CreateSpace Independent Publishing

  • Place of publication

    Aachen

  • Event location

    Oravská Lesná

  • Event date

    Sep 18, 2020

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article