Statistical Downscaling and Hydrological Modeling based-Runoff simulation in Trans-boundary Mangla Watershed Pakistan
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00534125" target="_blank" >RIV/67985807:_____/20:00534125 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0312358" target="_blank" >http://hdl.handle.net/11104/0312358</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/w12113254" target="_blank" >10.3390/w12113254</a>
Alternative languages
Result language
angličtina
Original language name
Statistical Downscaling and Hydrological Modeling based-Runoff simulation in Trans-boundary Mangla Watershed Pakistan
Original language description
The economy of Pakistan relies on the agricultural sector which mainly depends on the irrigation water generating from the upper Indus river basin. Mangla watershed is a trans-boundary basin which shares borders of India and Pakistan, it comprises five major sub-basins, i.e., Jhelum, Poonch, Kanshi, Neelum and Kunhar. The runoff production of this basin is largely controlled by snowmelt in combination with the winter precipitation in the upper part of the basin and summer monsoon. The present study focusses on the application of a statistical downscaling method to generate future climatic scenarios of climatic trends (temperature and precipitation) in Mangla watershed. Statistical Downscaling Model (SDSM) was applied to downscale the Hadley Centre Coupled Model, version 3, Global Climate Model (HadCM3-GCM) predictions of the A2 and B2 emission scenarios. The surface water analyst tool (SWAT) hydrological model was used for the future projected streamflows based on developing climate change scenarios by SDSM. The results revealed an increasing trend of annual maximum temperature (A2) at the rates of 0.4, 0.7 and 1.2 °C for the periods of 2020s, 2050s and 2080s, respectively. However, a consistent decreasing trend of temperature was observed at the high-altitude region. Similarly, the annual minimum temperature exhibited an increasing pattern at the rates of 0.3, 0.5 and 0.9 °C for the periods of 2020s, 2050s and 2080s, respectively. Furthermore, similar increases were observed for annual precipitation at the rates of 6%, 10%, and 19% during 2020, 2050 and 2080, respectively, for the whole watershed. Significant increasing precipitation trends in the future (2080) were observed in Kunhar, Neelum, Poonch and Kanshi sub-basins at the rates of 16%, 11%, 13% and 59%, respectively. Consequently, increased annual streamflow in the future at the rate of 15% was observed attributing to an increased temperature for snow melting in Mangla watershed. The similar increasing streamflow trend is consistent with the seasonal trends in terms of winter (16%), spring (19%) and summer (20%) - however, autumn exhibited decreasing trend for all periods.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10501 - Hydrology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Water
ISSN
2073-4441
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
3254
UT code for WoS article
000594213700001
EID of the result in the Scopus database
2-s2.0-85097271624