The 2020 Election In The United States: Beta Regression Versus Regression Quantiles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00553129" target="_blank" >RIV/67985807:_____/21:00553129 - isvavai.cz</a>
Result on the web
<a href="https://relik.vse.cz/2021/download/pdf/380-Kalina-Jan-paper.pdf" target="_blank" >https://relik.vse.cz/2021/download/pdf/380-Kalina-Jan-paper.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The 2020 Election In The United States: Beta Regression Versus Regression Quantiles
Original language description
The results of the presidential election in the United States in 2020 desire a detailed statistical analysis by advanced statistical tools, as they were much different from the majority of available prognoses as well as from the presented opinion polls. We perform regression modeling for explaining the election results by means of three demographic predictors for individual 50 states: weekly attendance at religious services, percentage of Afroamerican population, and population density. We compare the performance of beta regression with linear regression, while beta regression performs only slightly better in terms of predicting the response. Because the United States population is very heterogeneous and the regression models are heteroscedastic, we focus on regression quantiles in the linear regression model. Particularly, we develop an original quintile regression map, such graphical visualization allows to perform an interesting interpretation of the effect of the demographic predictors on the election outcome on the level of individual states.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50601 - Political science
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
RELIK 2021. Conference Proceedings
ISBN
978-80-245-2429-0
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
321-331
Publisher name
Prague University of Economics and Business
Place of publication
Prague
Event location
Praha
Event date
Nov 4, 2021
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—