All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Sufficient Conditions for Hamiltonicity in Dense Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00581997" target="_blank" >RIV/67985807:_____/21:00581997 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-83823-2_85" target="_blank" >https://doi.org/10.1007/978-3-030-83823-2_85</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-83823-2_85" target="_blank" >10.1007/978-3-030-83823-2_85</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Sufficient Conditions for Hamiltonicity in Dense Graphs

  • Original language description

    We study structural conditions in dense graphs that guarantee the existence of vertex-spanning substructures such as Hamilton cycles. Recall that every Hamiltonian graph is connected, has an almost perfect matching and, excluding the bipartite case, contains an odd cycle. Our main result states that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Moreover, the same holds for powers of cycles and the bandwidth setting subject to natural generalizations of connectivity, matchings and odd cycles. This solves the embedding problem that underlies multiple lines of research on sufficient conditions for Hamiltonicity. As an application, we recover several old and new results, and prove versions of the Bandwidth Theorem under Ore-type degree conditions, Pósa-type degree conditions, deficiency-type conditions and for balanced partite graphs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Extended Abstracts EuroComb 2021

  • ISBN

    978-3-030-83822-5

  • ISSN

    2297-0215

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    527-532

  • Publisher name

    Birkhäuser / Springer

  • Place of publication

    Cham

  • Event location

    Barcelona / Online

  • Event date

    Sep 6, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article