On Sufficient Conditions for Hamiltonicity in Dense Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00581997" target="_blank" >RIV/67985807:_____/21:00581997 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-83823-2_85" target="_blank" >https://doi.org/10.1007/978-3-030-83823-2_85</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-83823-2_85" target="_blank" >10.1007/978-3-030-83823-2_85</a>
Alternative languages
Result language
angličtina
Original language name
On Sufficient Conditions for Hamiltonicity in Dense Graphs
Original language description
We study structural conditions in dense graphs that guarantee the existence of vertex-spanning substructures such as Hamilton cycles. Recall that every Hamiltonian graph is connected, has an almost perfect matching and, excluding the bipartite case, contains an odd cycle. Our main result states that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Moreover, the same holds for powers of cycles and the bandwidth setting subject to natural generalizations of connectivity, matchings and odd cycles. This solves the embedding problem that underlies multiple lines of research on sufficient conditions for Hamiltonicity. As an application, we recover several old and new results, and prove versions of the Bandwidth Theorem under Ore-type degree conditions, Pósa-type degree conditions, deficiency-type conditions and for balanced partite graphs.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Extended Abstracts EuroComb 2021
ISBN
978-3-030-83822-5
ISSN
2297-0215
e-ISSN
—
Number of pages
6
Pages from-to
527-532
Publisher name
Birkhäuser / Springer
Place of publication
Cham
Event location
Barcelona / Online
Event date
Sep 6, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—