Dynamic Cantor Derivative Logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00557159" target="_blank" >RIV/67985807:_____/22:00557159 - isvavai.cz</a>
Result on the web
<a href="https://drops.dagstuhl.de/opus/volltexte/2022/15739/pdf/LIPIcs-CSL-2022-19.pdf" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2022/15739/pdf/LIPIcs-CSL-2022-19.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CSL.2022.19" target="_blank" >10.4230/LIPIcs.CSL.2022.19</a>
Alternative languages
Result language
angličtina
Original language name
Dynamic Cantor Derivative Logic
Original language description
Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative logics, also referred to as d-logics. Unlike logics based on the topological closure operator, d-logics have not previously been studied in the framework of dynamical systems, which are pairs (X, f) consisting of a topological space X equipped with a continuous function f : X → X. We introduce the logics wK4C, K4C and GLC and show that they all have the finite Kripke model property and are sound and complete with respect to the d-semantics in this dynamical setting. In particular, we prove that wK4C is the d-logic of all dynamic topological systems, K4C is the d-logic of all TD dynamic topological systems, and GLC is the d-logic of all dynamic topological systems based on a scattered space. We also prove a general result for the case where f is a homeomorphism, which in particular yields soundness and completeness for the corresponding systems wK4H, K4H and GLH. The main contribution of this work is the foundation of a general proof method for finite model property and completeness of dynamic topological d-logics. Furthermore, our result for GLC constitutes the first step towards a proof of completeness for the trimodal topo-temporal language with respect to a finite axiomatisation – something known to be impossible over the class of all spaces.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
30th EACSL Annual Conference on Computer Science Logic
ISBN
—
ISSN
1868-8969
e-ISSN
—
Number of pages
17
Pages from-to
"19:1"-"19:17"
Publisher name
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl
Event location
Göttingen / Virtual
Event date
Feb 14, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—