Propagation Complete Encodings of Smooth DNNF Theories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00559241" target="_blank" >RIV/67985807:_____/22:00559241 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10452224
Result on the web
<a href="https://dx.doi.org/10.1007/s10601-022-09331-2" target="_blank" >https://dx.doi.org/10.1007/s10601-022-09331-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10601-022-09331-2" target="_blank" >10.1007/s10601-022-09331-2</a>
Alternative languages
Result language
angličtina
Original language name
Propagation Complete Encodings of Smooth DNNF Theories
Original language description
We investigate conjunctive normal form (CNF) encodings of a function represented with a decomposable negation normal form (DNNF). Several encodings of DNNFs and decision diagrams were considered by (Abio et al., 2016). The authors differentiate between encodings which implement consistency or domain consistency by unit propagation from encodings which are unit refutation complete or propagation complete. The difference is that in the former case we do not care about propagation strength of the encoding with respect to the auxiliary variables while in the latter case we treat all variables (the main and the auxiliary ones) in the same way. The currently known encodings of DNNF theories implement domain consistency. Building on these encodings we generalize the result of (Abio et al., 2016) on a propagation complete encoding of decision diagrams and present a propagation complete encoding of a DNNF and its generalization for variables with finite domains.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-19463S" target="_blank" >GA19-19463S: Boolean Representation Languages Complete for Unit Propagation</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Constraints
ISSN
1383-7133
e-ISSN
1572-9354
Volume of the periodical
27
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
33
Pages from-to
327-359
UT code for WoS article
000805699300002
EID of the result in the Scopus database
2-s2.0-85131328469