All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Theory and Application of Labelling Techniques for Interpretability Logics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00559445" target="_blank" >RIV/67985807:_____/22:00559445 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.1002/malq.202200015" target="_blank" >https://dx.doi.org/10.1002/malq.202200015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/malq.202200015" target="_blank" >10.1002/malq.202200015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Theory and Application of Labelling Techniques for Interpretability Logics

  • Original language description

    The notion of a critical successor [5] in relational semantics has been central to most classic modal completeness proofs in interpretability logics. In this paper we shall work with a more general notion, that of an assuring successor. This will enable more concisely formulated completeness proofs, both with respect to ordinary and generalised Veltman semantics. Due to their interesting theoretical properties, we will devote some space to the study of a particular kind of assuring labels, the so-called full labels and maximal labels. After a general treatment of assuringness, we shall apply it to obtain a completeness result for the modal logic ILP w.r.t. generalised semantics for a restricted class of frames.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Logic Quarterly

  • ISSN

    0942-5616

  • e-ISSN

    1521-3870

  • Volume of the periodical

    68

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    23

  • Pages from-to

    352-374

  • UT code for WoS article

    000825207200001

  • EID of the result in the Scopus database

    2-s2.0-85128860233