All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Using graph neural networks as surrogate models in genetic programming

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00561586" target="_blank" >RIV/67985807:_____/22:00561586 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/22:10455086

  • Result on the web

    <a href="https://dx.doi.org/10.1145/3520304.3529024" target="_blank" >https://dx.doi.org/10.1145/3520304.3529024</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3520304.3529024" target="_blank" >10.1145/3520304.3529024</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Using graph neural networks as surrogate models in genetic programming

  • Original language description

    Surrogate models have been used for decades to speed up evolutionary algorithms, however, most of their uses are tailored for problems with simple individual encoding, like vectors of numbers. In this paper, we evaluate the possibility to use two different types of graph neural networks to predict the quality of a solution in tree-based genetic programming without evaluating the trees. The proposed models are evaluated in a number of benchmarks from symbolic regression and reinforcement learning and show that GNNs can be successfully used as surrogate models for problems with a complex structure.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    GECCO 2022 Companion - Proceedings of the 2022 Genetic and Evolutionary Computation Conference

  • ISBN

    978-1-4503-9268-6

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    582-585

  • Publisher name

    ACM

  • Place of publication

    New York

  • Event location

    Boston

  • Event date

    Jul 9, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article