Minimum color spanning circle of imprecise points
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00562741" target="_blank" >RIV/67985807:_____/22:00562741 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/22:00360475
Result on the web
<a href="https://dx.doi.org/10.1016/j.tcs.2022.07.016" target="_blank" >https://dx.doi.org/10.1016/j.tcs.2022.07.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2022.07.016" target="_blank" >10.1016/j.tcs.2022.07.016</a>
Alternative languages
Result language
angličtina
Original language name
Minimum color spanning circle of imprecise points
Original language description
Let R be a set of n colored imprecise points, where each point is colored by one of k colors. Each imprecise point is specified by a unit disk in which the point lies. We study the problem of computing the smallest and the largest possible minimum color spanning circle, among all possible choices of points inside their corresponding disks. We present an O (nk log n) time algorithm to compute a smallest minimum color spanning circle. Regarding the largest minimum color spanning circle, we show that the problem is NP-Hard and present a 13-factor approximation algorithm. We improve the approximation factor to 12 for the case where no two disks of distinct color intersect. (c) 2022 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Structural properties of visibility in terrains and farthest color Voronoi diagrams</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
1879-2294
Volume of the periodical
930
Issue of the periodical within the volume
September 2022
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
116-127
UT code for WoS article
000862840900011
EID of the result in the Scopus database
2-s2.0-85135180945