Arithmetical and Hyperarithmetical Worm Battles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00565843" target="_blank" >RIV/67985807:_____/22:00565843 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.1093/logcom/exac067" target="_blank" >https://dx.doi.org/10.1093/logcom/exac067</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exac067" target="_blank" >10.1093/logcom/exac067</a>
Alternative languages
Result language
angličtina
Original language name
Arithmetical and Hyperarithmetical Worm Battles
Original language description
Japaridze's provability logic GLP has one modality [n] for each natural number and has been used by Beklemishev for a proof theoretic analysis of Peano arithmetic (PA) and related theories. Among other benefits, this analysis yields the so called Every Worm Dies (EWD) principle, a natural combinatorial statement independent of PA. Recently, Beklemishev and Pakhomov have studied notions of provability corresponding to transfinite modalities in GLP. We show that indeed the natural transfinite extension of GLP is sound for this interpretation and yields independent combinatorial principles for the second-order theory ACA of arithmetical comprehension with full induction. We also provide restricted versions of EWD related to the fragments I Sigma(n) of PA. In order to prove the latter, we show that standard Hardy functions majorize their variants based on tree ordinals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Logic and Computation
ISSN
0955-792X
e-ISSN
1465-363X
Volume of the periodical
32
Issue of the periodical within the volume
8
Country of publishing house
GB - UNITED KINGDOM
Number of pages
27
Pages from-to
1558-1584
UT code for WoS article
000873825500001
EID of the result in the Scopus database
—