All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Using Artificial Neural Networks to Determine Ontologies Most Relevant to Scientific Texts

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00565961" target="_blank" >RIV/67985807:_____/22:00565961 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/22:00359902

  • Result on the web

    <a href="https://ceur-ws.org/Vol-3226/paper5.pdf" target="_blank" >https://ceur-ws.org/Vol-3226/paper5.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Using Artificial Neural Networks to Determine Ontologies Most Relevant to Scientific Texts

  • Original language description

    This paper provides an insight into the possibility of how to find ontologies most relevant to scientific texts using artificial neural networks. The basic idea of the presented approach is to select a representative paragraph from a source text file, embed it to a vector space by a pre-trained fine-tuned transformer, and classify the embedded vector according to its relevance to a target ontology. We have considered different classifiers to categorize the output from the transformer, in particular random forest, support vector machine, multilayer perceptron, k-nearest neighbors, and Gaussian process classifiers. Their suitability has been evaluated in a use case with ontologies and scientific texts concerning catalysis research. From results we can say the worst results have random forest. The best results in this task brought support vector machine classifier

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 22st Conference Information Technologies – Applications and Theory (ITAT 2022)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    44-54

  • Publisher name

    Technical University & CreateSpace Independent Publishing

  • Place of publication

    Aachen

  • Event location

    Zuberec

  • Event date

    Sep 23, 2022

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article