All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Minimum Degrees for Powers of Paths and Cycles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00570691" target="_blank" >RIV/67985807:_____/22:00570691 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1137/20M1359183" target="_blank" >https://doi.org/10.1137/20M1359183</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/20M1359183" target="_blank" >10.1137/20M1359183</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Minimum Degrees for Powers of Paths and Cycles

  • Original language description

    We study minimum degree conditions under which a graph G contains kth powers of paths and cycles of arbitrary specified lengths. We determine precise thresholds, assuming that the order of G is large. This extends a result of Allen, Böttcher, and Hladký [J. Lond. Math. Soc. (2), 84 (2011), pp. 269--302] concerning the containment of squares of paths and squares of cycles of arbitrary specified lengths and settles a conjecture of theirs in the affirmative.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

    1095-7146

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    70

  • Pages from-to

    2667-2736

  • UT code for WoS article

    000934152600011

  • EID of the result in the Scopus database

    2-s2.0-85148032941