Minimum Degrees for Powers of Paths and Cycles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00570691" target="_blank" >RIV/67985807:_____/22:00570691 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1137/20M1359183" target="_blank" >https://doi.org/10.1137/20M1359183</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/20M1359183" target="_blank" >10.1137/20M1359183</a>
Alternative languages
Result language
angličtina
Original language name
Minimum Degrees for Powers of Paths and Cycles
Original language description
We study minimum degree conditions under which a graph G contains kth powers of paths and cycles of arbitrary specified lengths. We determine precise thresholds, assuming that the order of G is large. This extends a result of Allen, Böttcher, and Hladký [J. Lond. Math. Soc. (2), 84 (2011), pp. 269--302] concerning the containment of squares of paths and squares of cycles of arbitrary specified lengths and settles a conjecture of theirs in the affirmative.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
1095-7146
Volume of the periodical
36
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
70
Pages from-to
2667-2736
UT code for WoS article
000934152600011
EID of the result in the Scopus database
2-s2.0-85148032941