Argument Mining with Modular BERT and Transfer Learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00577167" target="_blank" >RIV/67985807:_____/23:00577167 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/IJCNN54540.2023.10191968" target="_blank" >http://dx.doi.org/10.1109/IJCNN54540.2023.10191968</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN54540.2023.10191968" target="_blank" >10.1109/IJCNN54540.2023.10191968</a>
Alternative languages
Result language
angličtina
Original language name
Argument Mining with Modular BERT and Transfer Learning
Original language description
We introduce BERT-MINUS, a modular, feature-enriched and transfer learning enabled model for Argument Mining. BERT-MINUS consists of: 1) a joint module which embeds the paragraph text, and 2) a dedicated module, consisting of three customized BERT models, which contextualize the argument markers, argument components and additional features given as text, respectively. BERT-MINUS implements two kinds of transfer learning - auto-transfer (transfer from a task to itself) and cross-transfer (classical transfer from one task to another) - via a novel Selective Fine-tuning mechanism. BERT-MINUS achieves state-of-the-art results on the Link Identification task and competitive results on the Argument Type Classification task. The synergy between the Features as Text and Selective Fine-tuning mechanisms significantly improves the performance of the model. Our work reveals the importance and potential of transfer learning via selective fine-tuning for modular Language Models. Moreover, this study dovetails naturally into the Prompt Engineering paradigm in NLP.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IJCNN 2023 Conference Proceedings
ISBN
978-1-6654-8867-9
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
191330
Publisher name
IEEE
Place of publication
Piscataway
Event location
Queensland
Event date
Jun 18, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001046198707037