All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Argument Mining with Modular BERT and Transfer Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00577167" target="_blank" >RIV/67985807:_____/23:00577167 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/IJCNN54540.2023.10191968" target="_blank" >http://dx.doi.org/10.1109/IJCNN54540.2023.10191968</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN54540.2023.10191968" target="_blank" >10.1109/IJCNN54540.2023.10191968</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Argument Mining with Modular BERT and Transfer Learning

  • Original language description

    We introduce BERT-MINUS, a modular, feature-enriched and transfer learning enabled model for Argument Mining. BERT-MINUS consists of: 1) a joint module which embeds the paragraph text, and 2) a dedicated module, consisting of three customized BERT models, which contextualize the argument markers, argument components and additional features given as text, respectively. BERT-MINUS implements two kinds of transfer learning - auto-transfer (transfer from a task to itself) and cross-transfer (classical transfer from one task to another) - via a novel Selective Fine-tuning mechanism. BERT-MINUS achieves state-of-the-art results on the Link Identification task and competitive results on the Argument Type Classification task. The synergy between the Features as Text and Selective Fine-tuning mechanisms significantly improves the performance of the model. Our work reveals the importance and potential of transfer learning via selective fine-tuning for modular Language Models. Moreover, this study dovetails naturally into the Prompt Engineering paradigm in NLP.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IJCNN 2023 Conference Proceedings

  • ISBN

    978-1-6654-8867-9

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    191330

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Queensland

  • Event date

    Jun 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001046198707037