Measure synchronization in interacting Hamiltonian systems: A brief review
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00579704" target="_blank" >RIV/67985807:_____/23:00579704 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.chaos.2023.114237" target="_blank" >https://doi.org/10.1016/j.chaos.2023.114237</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2023.114237" target="_blank" >10.1016/j.chaos.2023.114237</a>
Alternative languages
Result language
angličtina
Original language name
Measure synchronization in interacting Hamiltonian systems: A brief review
Original language description
This paper aims to review the measure synchronization, a weak form of synchronization observed in coupled Hamiltonian systems, briefly. This synchronization is characterized by a Hamiltonian system that displays either quasiperiodic or chaotic dynamics. Each system, in the presence of either linear or nonlinear coupling, shares a phase space domain with an identical invariant measure in the measure synchronized state. It is important to note that while the trajectories are identical in measure, they do not necessarily exhibit complete temporal synchrony. This synchronization has been observed in various physical systems, such as coupled pendulums, Josephson junctions, and lasers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chaos Solitons & Fractals
ISSN
0960-0779
e-ISSN
1873-2887
Volume of the periodical
177
Issue of the periodical within the volume
December 2023
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
114237
UT code for WoS article
001111309300001
EID of the result in the Scopus database
2-s2.0-85175530286