All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robustness Aspects of Optimized Centroids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00580817" target="_blank" >RIV/67985807:_____/23:00580817 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-09034-9_22" target="_blank" >https://doi.org/10.1007/978-3-031-09034-9_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-09034-9_22" target="_blank" >10.1007/978-3-031-09034-9_22</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robustness Aspects of Optimized Centroids

  • Original language description

    Centroids are often used for object localization tasks, supervised segmentation in medical image analysis, or classification in other specific tasks. This paper starts by contributing to the theory of centroids by evaluating the effect of modified illumination on the weighted correlation coefficient. Further, robustness of various centroid-based tools is investigated in experiments related to mouth localization in non-standardized facial images or classification of high-dimensional data in a matched pairs design. The most robust results are obtained if the sparse centroid-based method for supervised learning is accompanied with an intrinsic variable selection. Robustness, sparsity, and energy-efficient computation turn out not to contradict the requirement on the optimal performance of the centroids.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Classification and Data Science in the Digital Age

  • ISBN

    978-3-031-09033-2

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    193-201

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Porto

  • Event date

    Jul 19, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article