All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deviation probabilities for arithmetic progressions and irregular discrete structures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00581051" target="_blank" >RIV/67985807:_____/23:00581051 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1214/23-EJP1012" target="_blank" >https://doi.org/10.1214/23-EJP1012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1214/23-EJP1012" target="_blank" >10.1214/23-EJP1012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deviation probabilities for arithmetic progressions and irregular discrete structures

  • Original language description

    Let the random variable X:=e(H[B]) count the number of edges of a hypergraph H induced by a random m-element subset B of its vertex set. Focussing on the case that the degrees of vertices in H vary significantly we prove bounds on the probability that X is far from its mean. It is possible to apply these results to discrete structures such as the set of k-term arithmetic progressions in {1,…,N}. Furthermore, our main theorem allows us to deduce results for the case B∼Bp is generated by including each vertex independently with probability p. In this setting our result on arithmetic progressions extends a result of Bhattacharya, Ganguly, Shao and Zhao [5]. We also mention connections to related central limit theorems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ20-27757Y" target="_blank" >GJ20-27757Y: Random discrete structures</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Probability

  • ISSN

    1083-6489

  • e-ISSN

    1083-6489

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    2023

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    31

  • Pages from-to

    172 (s. 1-31)

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85183172344