First-Order Relevant Reasoners in Classical Worlds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00572117" target="_blank" >RIV/67985807:_____/24:00572117 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1017/S1755020323000096" target="_blank" >https://doi.org/10.1017/S1755020323000096</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1755020323000096" target="_blank" >10.1017/S1755020323000096</a>
Alternative languages
Result language
angličtina
Original language name
First-Order Relevant Reasoners in Classical Worlds
Original language description
Sedlár and Vigiani [18] have developed an approach to propositional epistemic logics wherein (i) an agent’s beliefs are closed under relevant implication and (ii) the agent is located in a classical possible world (i.e., the non-modal fragment is classical). Here I construct first-order extensions of these logics using the non-Tarskian interpretation of the quantifiers introduced by Mares and Goldblatt [12], and later extended to quantified modal relevant logics by Ferenz [6]. Modular soundness and completeness are proved for constant domain semantics, using non-general frames with Mares–Goldblatt truth conditions. I further detail the relation between the demand that classical possible worlds have Tarskian truth conditions and incompleteness results in quantified relevant logics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-01137S" target="_blank" >GA22-01137S: Metamathematics of substructural modal logics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Review of Symbolic Logic
ISSN
1755-0203
e-ISSN
1755-0211
Volume of the periodical
17
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
26
Pages from-to
793-818
UT code for WoS article
000962462700001
EID of the result in the Scopus database
2-s2.0-85151875840