On pattern-avoiding permutons
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00582637" target="_blank" >RIV/67985807:_____/24:00582637 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14330/24:00139266
Result on the web
<a href="https://doi.org/10.1002/rsa.21208" target="_blank" >https://doi.org/10.1002/rsa.21208</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rsa.21208" target="_blank" >10.1002/rsa.21208</a>
Alternative languages
Result language
angličtina
Original language name
On pattern-avoiding permutons
Original language description
The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order k have a particularly simple structure. Namely, almost every fiber of the disintegration of the permuton (say, along the x-axis) consists only of atoms, at most (k-1) many, and this bound is sharp. We use this to give a simple proof of the “permutation removal lemma.”
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX21-21762X" target="_blank" >GX21-21762X: Graph limits and beyond</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Random Structures and Algorithms
ISSN
1042-9832
e-ISSN
1098-2418
Volume of the periodical
65
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
46-60
UT code for WoS article
001150636700001
EID of the result in the Scopus database
2-s2.0-85183664375