Equational Anti-Unification over Absorption Theories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00584853" target="_blank" >RIV/67985807:_____/24:00584853 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-63501-4_17" target="_blank" >http://dx.doi.org/10.1007/978-3-031-63501-4_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-63501-4_17" target="_blank" >10.1007/978-3-031-63501-4_17</a>
Alternative languages
Result language
angličtina
Original language name
Equational Anti-Unification over Absorption Theories
Original language description
Interest in anti-unification, the dual problem of unification, is on the rise due to applications within the field of software analysis and related areas. For example, anti-unification-based techniques have found uses within clone detection and automatic program repair methods. While syntactic forms of anti-unification are enough for many applications, some aspects of software analysis methods are more appropriately modeled by reasoning modulo an equational theory. Thus, extending existing anti-unification methods to deal with important equational theories is the natural step forward. This paper considers anti-unification modulo pure absorption theories, i.e., some operators are associated with a special constant satisfying the axiom f(x,εf)≈f(εf,x)≈εf. We provide a sound and complete rule-based algorithm for such theories. Furthermore, we show that anti-unification modulo absorption is infinitary. Despite this, our algorithm terminates and produces a finitary algorithmic representation of the minimal complete set of solutions. We also show that the linear variant is finitary.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GF22-06414L" target="_blank" >GF22-06414L: Proof analysis AND Automated deduction FOr REcursive STructures</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Automated Reasoning. 12th International Joint Conference, IJCAR 2024. Proceedings Part II
ISBN
978-3-031-63501-4
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
21
Pages from-to
317-337
Publisher name
Springer
Place of publication
Cham
Event location
Nancy
Event date
Jul 1, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001275062900017