Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00585224" target="_blank" >RIV/67985807:_____/24:00585224 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11110/24:10482362
Result on the web
<a href="https://doi.org/10.1186/s12874-024-02197-3" target="_blank" >https://doi.org/10.1186/s12874-024-02197-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12874-024-02197-3" target="_blank" >10.1186/s12874-024-02197-3</a>
Alternative languages
Result language
angličtina
Original language name
Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression
Original language description
BACKGROUND: Vaccine efficacy (VE) assessed in a randomized controlled clinical trial can be affected by demographic, clinical, and other subject-specific characteristics evaluated as baseline covariates. Understanding the effect of covariates on efficacy is key to decisions by vaccine developers and public health authorities. METHODS: This work evaluates the impact of including correlate of protection (CoP) data in logistic regression on its performance in identifying statistically and clinically significant covariates in settings typical for a vaccine phase 3 trial. The proposed approach uses CoP data and covariate data as predictors of clinical outcome (diseased versus non-diseased) and is compared to logistic regression (without CoP data) to relate vaccination status and covariate data to clinical outcome. RESULTS: Clinical trial simulations, in which the true relationship between CoP data and clinical outcome probability is a sigmoid function, show that use of CoP data increases the positive predictive value for detection of a covariate effect. If the true relationship is characterized by a decreasing convex function, use of CoP data does not substantially change positive or negative predictive value. In either scenario, vaccine efficacy is estimated more precisely (i.e., confidence intervals are narrower) in covariate-defined subgroups if CoP data are used, implying that using CoP data increases the ability to determine clinical significance of baseline covariate effects on efficacy. CONCLUSIONS: This study proposes and evaluates a novel approach for assessing baseline demographic covariates potentially affecting VE. Results show that the proposed approach can sensitively and specifically identify potentially important covariates and provides a method for evaluating their likely clinical significance in terms of predicted impact on vaccine efficacy. It shows further that inclusion of CoP data can enable more precise VE estimation, thus enhancing study power and/or efficiency and providing even better information to support health policy and development decisions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30303 - Infectious Diseases
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
BMC Medical Research Methodology
ISSN
1471-2288
e-ISSN
1471-2288
Volume of the periodical
24
Issue of the periodical within the volume
30 April 2024
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
101
UT code for WoS article
001210809100001
EID of the result in the Scopus database
2-s2.0-85191853703