All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

One Variable Relevant Logics are S5ish

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00585531" target="_blank" >RIV/67985807:_____/24:00585531 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s10992-024-09753-8" target="_blank" >https://doi.org/10.1007/s10992-024-09753-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10992-024-09753-8" target="_blank" >10.1007/s10992-024-09753-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    One Variable Relevant Logics are S5ish

  • Original language description

    Here I show that the one-variable fragment of several first-order relevant logics corresponds to certain S5ish extensions of the underlying propositional relevant logic. In particular, given a fairly standard translation between modal and one-variable languages and a permuting propositional relevant logic L, a formula A of the one-variable fragment is a theorem of LQ (QL) iff its translation is a theorem of L5 (L.5). The proof is model-theoretic. In one direction, semantics based on the Mares-Goldblatt [15] semantics for quantified L are transformed into ternary (plus two binary) relational semantics for S5-like extensions of L (for a general presentation, see Seki [26, 27]). In the other direction, a valuation is given for the full first-order relevant logic based on L into a model for a suitable S5 extension of L. I also discuss this work’s relation to finding a complete axiomatization of the constant domain, non-general frame ternary relational semantics for which RQ is incomplete [11]

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-01137S" target="_blank" >GA22-01137S: Metamathematics of substructural modal logics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Philosophical Logic

  • ISSN

    0022-3611

  • e-ISSN

    1573-0433

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    23

  • Pages from-to

    909-931

  • UT code for WoS article

    001190188700001

  • EID of the result in the Scopus database

    2-s2.0-85188304602