All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Some Comparisons of Linear and Deep ReLU Network Approximation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00598159" target="_blank" >RIV/67985807:_____/24:00598159 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-72359-9_17" target="_blank" >https://doi.org/10.1007/978-3-031-72359-9_17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-72359-9_17" target="_blank" >10.1007/978-3-031-72359-9_17</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Some Comparisons of Linear and Deep ReLU Network Approximation

  • Original language description

    Influence of depth of ReLU networks on growth of their non-linearity is studied. Lower bounds on worst-case errors in linear approximation are derived for sets of highly-oscillatory functions that can be exactly represented by ReLU networks. Dependence of these errors on network depth is analyzed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2024. Proceedings, Part X

  • ISBN

    978-3-031-72358-2

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    231-240

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Lugano

  • Event date

    Sep 17, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001331898500017