Some Comparisons of Linear and Deep ReLU Network Approximation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00598159" target="_blank" >RIV/67985807:_____/24:00598159 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-72359-9_17" target="_blank" >https://doi.org/10.1007/978-3-031-72359-9_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-72359-9_17" target="_blank" >10.1007/978-3-031-72359-9_17</a>
Alternative languages
Result language
angličtina
Original language name
Some Comparisons of Linear and Deep ReLU Network Approximation
Original language description
Influence of depth of ReLU networks on growth of their non-linearity is studied. Lower bounds on worst-case errors in linear approximation are derived for sets of highly-oscillatory functions that can be exactly represented by ReLU networks. Dependence of these errors on network depth is analyzed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks and Machine Learning – ICANN 2024. Proceedings, Part X
ISBN
978-3-031-72358-2
ISSN
0302-9743
e-ISSN
—
Number of pages
10
Pages from-to
231-240
Publisher name
Springer
Place of publication
Cham
Event location
Lugano
Event date
Sep 17, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001331898500017