All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Bayesian Interpretation of Robust Regression Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00600652" target="_blank" >RIV/67985807:_____/24:00600652 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-72332-2_3" target="_blank" >https://doi.org/10.1007/978-3-031-72332-2_3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-72332-2_3" target="_blank" >10.1007/978-3-031-72332-2_3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Bayesian Interpretation of Robust Regression Neural Networks

  • Original language description

    The aim of this work is to search for intuitive interpretations of regularized regression procedures within the framework of Bayesian inference. First, the paper considers Bayesian estimation of parameters of the linear regression model. Second, regularized neural networks are explained to correspond to the Bayesian approach obtained under specific assumptions. The contribution is a unique compact look on training neural networks with available prior information, i.e. a likelihood-based perspective of training neural networks. Attention is also paid to very recently proposed regularized versions of robust neural networks, as a novelty, these are expressed by means of quasi-likelihood and their connection to Bayesian reasoning is discussed as well.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2024. Proceedings Part I

  • ISBN

    978-3-031-72331-5

  • ISSN

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    30-40

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Lugano

  • Event date

    Sep 17, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001331868600003