On the Bayesian Interpretation of Robust Regression Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00600652" target="_blank" >RIV/67985807:_____/24:00600652 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-72332-2_3" target="_blank" >https://doi.org/10.1007/978-3-031-72332-2_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-72332-2_3" target="_blank" >10.1007/978-3-031-72332-2_3</a>
Alternative languages
Result language
angličtina
Original language name
On the Bayesian Interpretation of Robust Regression Neural Networks
Original language description
The aim of this work is to search for intuitive interpretations of regularized regression procedures within the framework of Bayesian inference. First, the paper considers Bayesian estimation of parameters of the linear regression model. Second, regularized neural networks are explained to correspond to the Bayesian approach obtained under specific assumptions. The contribution is a unique compact look on training neural networks with available prior information, i.e. a likelihood-based perspective of training neural networks. Attention is also paid to very recently proposed regularized versions of robust neural networks, as a novelty, these are expressed by means of quasi-likelihood and their connection to Bayesian reasoning is discussed as well.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks and Machine Learning – ICANN 2024. Proceedings Part I
ISBN
978-3-031-72331-5
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
30-40
Publisher name
Springer
Place of publication
Cham
Event location
Lugano
Event date
Sep 17, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001331868600003