All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computational Aspects of Psychometric Methods and Beyond

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00601127" target="_blank" >RIV/67985807:_____/24:00601127 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.psychometricsociety.org/sites/main/files/file-attachments/imps2024_abstracts.pdf?1720733361#page=211" target="_blank" >https://www.psychometricsociety.org/sites/main/files/file-attachments/imps2024_abstracts.pdf?1720733361#page=211</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computational Aspects of Psychometric Methods and Beyond

  • Original language description

    ZÁKLADNÍ ÚDAJE: IMPS 2024 Abstracts. Prague: IMPS, 2024. s. 173-173. [IMPS 2024: Annual Meeting of the Psychometric Society. 16.07.2024-19.07.2024, Prague]. ABSTRAKT: This talk introduces the research expanding upon the topics of the recently published book “Computational Aspects of Psychometric Methods: With R” (Martinková & Hladká, 2023). Focusing first on inter-rater reliability (IRR), we describe a flexible method for assessing heterogeneity in IRR with variance components models (Martinková et al., 2023) and discuss the relationship between the IRR and false positive rate (Bartoš & Martinková, 2024). Furthermore, we introduce innovative approaches for assessing item functioning and detecting heterogeneity in responses to multi-item measurements, proposing new iterative methods (Hladká et al., 2024a, 2024b) and Bayesian estimation algorithms (Pavlech & Martinková, 2024). We also discuss approaches incorporating more complex data, such as item wording (Štěpánek et al., 2023). Finally, we provide an overview of the software implementation, highlighting the ShinyItemAnalysis R package and interactive application (Martinková & Drabinová, 2018) and its new extendability option via add-on modules (Martinková et al., 2024).

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004583" target="_blank" >EH22_008/0004583: Research of Excellence on Digital Technologies and Wellbeing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů