Random variate generation for discrete fuzzy numbers based on α-cuts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00603021" target="_blank" >RIV/67985807:_____/24:00603021 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/BDAI62182.2024.10692377" target="_blank" >https://doi.org/10.1109/BDAI62182.2024.10692377</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BDAI62182.2024.10692377" target="_blank" >10.1109/BDAI62182.2024.10692377</a>
Alternative languages
Result language
angličtina
Original language name
Random variate generation for discrete fuzzy numbers based on α-cuts
Original language description
Probabilistic based random variate generation is the most popular method for representing randomness into simulation scenarios that could occur in real life. The main idea behind the use of random numbers to replicate the value of a uncertain variable can also be extended to fuzzy sets, including discrete fuzzy sets. This way, it is possible to use random numbers and the α-cut of a discrete fuzzy set to retrieve a random variate alongside its membership degree. To do so, a method for computing discrete fuzzy random variates based on α-cuts is proposed and applied to two examples: a comprehensive and a simulation example.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2024 IEEE 7th International Conference on Big Data and Artificial Intelligence (BDAI) Proceedings
ISBN
979-8-3503-5201-6
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
259-264
Publisher name
IEEE
Place of publication
Piscataway
Event location
Beijing
Event date
Jul 5, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—