Bisimulation for impure simplicial complexes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00617406" target="_blank" >RIV/67985807:_____/24:00617406 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bisimulation for impure simplicial complexes
Original language description
As an alternative to Kripke models, simplicial complexes are a versatile semantic primitive on which to interpret epistemic logic. Given a set of vertices, a simplicial complex is a downward closed set of subsets, called simplexes, of the vertex set. A maximal simplex is called a facet. Impure simplicial complexes represent that some agents (processes) are dead. It is known that impure simplicial complexes categorically correspond to so-called partial epistemic (Kripke) models. In this contribution, we define a notion of bisimulation to compare impure simplicial complexes and show that it has the Hennessy-Milner property. These results are for a logical language including atoms that express whether agents are alive or dead. Without these atoms no reasonable standard notion of bisimulation exists, as we amply justify by counterexamples, because such a restricted language is insufficiently expressive.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GF22-23022L" target="_blank" >GF22-23022L: Coalition and Epistemic Logic: An Intensional Approach to Groups</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Modal Logic. Volume 15
ISBN
978-1-84890-467-5
ISSN
—
e-ISSN
—
Number of pages
24
Pages from-to
225-248
Publisher name
College Publications
Place of publication
London
Event location
Prague
Event date
Aug 19, 2024
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—