All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Correlation between accretion rate and free-free emission in protoplanetary disks: A multiwavelength analysis of central mm/cm emission in transition disks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A90106%2F24%3A00617501" target="_blank" >RIV/67985815:90106/24:00617501 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1051/0004-6361/202348387" target="_blank" >https://doi.org/10.1051/0004-6361/202348387</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202348387" target="_blank" >10.1051/0004-6361/202348387</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Correlation between accretion rate and free-free emission in protoplanetary disks: A multiwavelength analysis of central mm/cm emission in transition disks

  • Original language description

    The inner regions of protoplanetary disks are believed to be the primary locations of planet formation and the processes that influence the global evolution of the disk, such as magnetohydrodynamic winds and photoevaporation. Transition disks with large inner dust cavities are ideal targets for studying the inner regions (of tens of au) of disks, as this is where the central emission can be fully disentangled from the outer disk emission. Aims. We present a homogeneous multiwavelength analysis of the continuum emission in a sample of 11 transition disks. We investigate the nature of the central emission close to the star, distinguishing between thermal dust and free-free emission. Methods. We combined spatially resolved measurements of continuum emission from the archival Atacama Large Millimeter/Submillimeter Array data with centimeter-wave (cm-wave) observations from the literature to study the spectral indices of the inner and outer disks separately. Results. While the emission from the outer disks is consistent with thermal dust emission, 10 out of 11 of the spectral indices estimated for the central emission close to the star suggest that this emission is free-free emission that is likely associated with an ionized jet or a disk wind. We found no correlation between the free-free luminosity and the accretion luminosity or the X-ray luminosity and this argues against an explanation based on a potential photoevaporative wind. A sub-linear correlation between the ionized mass loss rate and the accretion rate onto the star was observed, suggesting the origin is drawn from the ionized jet. Conclusions. The relative lack of millimeter-dust (mm-dust) grains in the majority of inner disks in transition disks indicates that either such dust grains have drifted quickly towards the central star, that grain growth is less efficient in the inner disk, or that grains rapidly grow to planetesimal sizes in the inner disk. The observed correlation between the ionized mass loss rate and the accretion rate suggests the outflow is strictly connected to stellar accretion and that accretion in these disks is driven by a jet.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy & Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

    1432-0746

  • Volume of the periodical

    684

  • Issue of the periodical within the volume

    Apr.

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    16

  • Pages from-to

    A134

  • UT code for WoS article

    001203444100007

  • EID of the result in the Scopus database

    2-s2.0-85190851042