An ALMA molecular inventory of warm Herbig Ae disks. II. Abundant complex organics and volatile sulphur in the IRS 48 disk
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A90106%2F24%3A00617529" target="_blank" >RIV/67985815:90106/24:00617529 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3847/1538-3881/ad26ff" target="_blank" >https://doi.org/10.3847/1538-3881/ad26ff</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/1538-3881/ad26ff" target="_blank" >10.3847/1538-3881/ad26ff</a>
Alternative languages
Result language
angličtina
Original language name
An ALMA molecular inventory of warm Herbig Ae disks. II. Abundant complex organics and volatile sulphur in the IRS 48 disk
Original language description
The Atacama Large Millimeter/submillimeter Array (ALMA) can probe the molecular content of planet-forming disks with unprecedented sensitivity. These observations allow us to build up an inventory of the volatiles available for forming planets and comets. Herbig Ae transition disks are fruitful targets due to the thermal sublimation of complex organic molecules (COMs) and likely H2O-rich ices in these disks. The IRS 48 disk shows a particularly rich chemistry that can be directly linked to its asymmetric dust trap. Here, we present ALMA observations of the IRS 48 disk where we detect 16 different molecules and make the first robust detections of H213CO , 34SO, 33SO, and c-H2COCH2 (ethylene oxide) in a protoplanetary disk. All of the molecular emissions, aside from CO, are co-located with the dust trap, and this includes newly detected simple molecules such as HCO+, HCN , and CS. Interestingly, there are spatial offsets between different molecular families, including between the COMs and sulfur-bearing species, with the latter being more azimuthally extended and radially located further from the star. The abundances of the newly detected COMs relative to CH3OH are higher than the expected protostellar ratios, which implies some degree of chemical processing of the inherited ices during the disk lifetime. These data highlight IRS 48 as a unique astrochemical laboratory to unravel the full volatile reservoir at the epoch of planet and comet formation and the role of the disk in (re)setting chemical complexity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomical Journal
ISSN
0004-6256
e-ISSN
1538-3881
Volume of the periodical
167
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
165
UT code for WoS article
001186629900001
EID of the result in the Scopus database
2-s2.0-85188111960