All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Impacts of bar-driven shear and shocks on star formation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A90106%2F24%3A00617595" target="_blank" >RIV/67985815:90106/24:00617595 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3847/1538-4357/ad410e" target="_blank" >https://doi.org/10.3847/1538-4357/ad410e</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/1538-4357/ad410e" target="_blank" >10.3847/1538-4357/ad410e</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Impacts of bar-driven shear and shocks on star formation

  • Original language description

    Bars drive gas inflow. As the gas flows inward, shocks and shear occur along the bar dust lanes. Such shocks and shear can affect the star formation (SF) and change the gas properties. For four barred galaxies, we present H alpha velocity gradient maps that highlight bar-driven shocks and shear using data from the PHANGS-MUSE and PHANGS-ALMA surveys, which allow us to study bar kinematics in unprecedented detail. Velocity gradients are enhanced along the bar dust lanes, where shocks and shear are shown to occur in numerical simulations. Velocity gradient maps also efficiently pick up H ii regions that are expanding or moving relative to the surroundings. We put pseudo-slits on the regions where velocity gradients are enhanced and find that H alpha and CO velocities jump up to similar to 170 km s-1, even after removing the effects of circular motions due to the galaxy rotation. Enhanced velocity gradients either coincide with the peak of CO intensity along the bar dust lanes or are slightly offset from CO intensity peaks, depending on the objects. Using the Baldwin-Philips-Terlevich BPT diagnostic, we identify the source of ionization on each spaxel and find that SF is inhibited in the high-velocity gradient regions of the bar, and the majority of those regions are classified as a low-ionization nuclear emission-line region (LINER) or composite. This implies that SF is inhibited where bar-driven shear and shocks are strong. Our results are consistent with the results from the numerical simulations that show SF is inhibited in the bar where the shear force is strong.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astrophysical Journal

  • ISSN

    0004-637X

  • e-ISSN

    1538-4357

  • Volume of the periodical

    968

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    22

  • Pages from-to

    87

  • UT code for WoS article

    001248978100001

  • EID of the result in the Scopus database

    2-s2.0-85196149992