All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chains of type-I radio bursts and drifting pulsation structures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F17%3A00479161" target="_blank" >RIV/67985815:_____/17:00479161 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1051/0004-6361/201629652" target="_blank" >http://dx.doi.org/10.1051/0004-6361/201629652</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/201629652" target="_blank" >10.1051/0004-6361/201629652</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chains of type-I radio bursts and drifting pulsation structures

  • Original language description

    Owing to similarities of chains of type-I radio bursts and drifting pulsation structures the question arises as to whether both these radio bursts are generated by similar processes. Characteristics and parameters of both these radio bursts are compared. We present examples of both types of bursts and show their similarities and di ff erences. Then, for chains of type-I bursts, a similar model as for drifting pulsation structures (DPSs) is proposed. We show that, similar to the DPS model, the chains of type-I bursts can be generated by the fragmented magnetic reconnection associated with plasmoid interactions. To support this new model of chains of type-I bursts, we present an e ff ect of merging two plasmoids to form one larger plasmoid on the radio spectrum of DPS. This process can also explain the ` wavy' appearance of some chains of type-I bursts. Further, we show that the chains of type-I bursts with the wavy appearance can be used for estimation of the magnetic field strength in their sources. We think that di ff erences of chains of type-I bursts and DPSs are mainly owing to di ff erent regimes of the magnetic field reconnection. While in the case of chains of type-I bursts, the magnetic reconnection and plasmoid interactions are in the quasi-separatrix layer of the active region in more or less quasi-saturated regime, in the case of DPSs, observed in the impulsive phase of eruptive flares, the magnetic reconnection and plasmoid interactions are in the current sheet formed under the flare magnetic rope, which moves upwards and forces this magnetic reconnection.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy & Astrophysics

  • ISSN

    1432-0746

  • e-ISSN

  • Volume of the periodical

    602

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    7

  • Pages from-to

    "A122/1"-"A122/7"

  • UT code for WoS article

    000404648300039

  • EID of the result in the Scopus database

    2-s2.0-85021637928