All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bright X-ray flares from Sgr A*

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F17%3A00483412" target="_blank" >RIV/67985815:_____/17:00483412 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1093/mnras/stx2312" target="_blank" >http://dx.doi.org/10.1093/mnras/stx2312</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/mnras/stx2312" target="_blank" >10.1093/mnras/stx2312</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bright X-ray flares from Sgr A*

  • Original language description

    We address a question whether the observed light curves of X-ray flares originating deep in galactic cores can give us independent constraints on the mass of the central supermassive black hole. To this end, we study four brightest flares which have been recorded from Sagittarius A*. They all exhibit an asymmetric shape consistent with a combination of two intrinsically separate peaks which occur at a certain time delay with respect to each other, and are characterized by their mutual flux ratio and the profile of raising/declining parts. Such asymmetric shapes arise naturally in the scenario of a temporary flash from a source orbiting near a supermassive black hole, at a radius of only similar to 10-20 gravitational radii. An interplay of relativistic effects is responsible for the modulation of the observed light curves: Doppler boosting, gravitational redshift, light focusing and light-travel time delays. We find the flare properties to be in agreement with the simulations (our ray-tracing code SIM5LIB). The inferred mass for each of the flares comes out in agreement with previous estimates based on orbits of stars, the latter have been observed at radii and over time-scales two orders of magnitude larger than those typical for the X-ray flares, so the two methods are genuinely different. We test the reliability of the method by applying it to another object, namely, the Seyfert I galaxy RE J1034+396.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monthly Notices of the Royal Astronomical Society

  • ISSN

    0035-8711

  • e-ISSN

  • Volume of the periodical

    472

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    4422-4433

  • UT code for WoS article

    000415652500050

  • EID of the result in the Scopus database