Density Fluctuations Associated with Turbulence and Waves: First Observations by Solar Orbiter
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F21%3A00541525" target="_blank" >RIV/67985815:_____/21:00541525 - isvavai.cz</a>
Alternative codes found
RIV/68378289:_____/21:00541525
Result on the web
<a href="https://www.aanda.org/articles/aa/full_html/2021/12/aa40936-21/aa40936-21.html" target="_blank" >https://www.aanda.org/articles/aa/full_html/2021/12/aa40936-21/aa40936-21.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202140936" target="_blank" >10.1051/0004-6361/202140936</a>
Alternative languages
Result language
angličtina
Original language name
Density Fluctuations Associated with Turbulence and Waves: First Observations by Solar Orbiter
Original language description
Aims. The aim of this work is to demonstrate that the probe-to-spacecraft potential measured by RPW on Solar Orbiter can be used to derive the plasma (electron) density measurement, which exhibits both a high temporal resolution and a high level of accuracy. To investigate the physical nature of the solar wind turbulence and waves, we analyze the density and magnetic field fluctuations around the proton cyclotron frequency observed by Solar Orbiter during the first perihelion encounter (∼0.5 AU away from the Sun).nMethods. We used the plasma density based on measurements of the probe-to-spacecraft potential in combination with magnetic field measurements by MAG to study the fields and density fluctuations in the solar wind. In particular, we used the polarization of the wave magnetic field, the phase between the compressible magnetic field and density fluctuations, and the compressibility ratio (the ratio of the normalized density fluctuations to the normalized compressible fluctuations of B) to characterize the observed waves and turbulence.nResults. We find that the density fluctuations are 180° out of phase (anticorrelated) with the compressible component of magnetic fluctuations for intervals of turbulence, whereas they are in phase for the circular-polarized waves. We analyze, in detail, two specific events with a simultaneous presence of left- and right-handed waves at different frequencies. We compare the observed wave properties to a prediction of the three-fluid (electrons, protons, and alphas) model. We find a limit on the observed wavenumbers, 10−6 < k < 7 × 10−6 m−1, which corresponds to a wavelength of 7 × 106 > λ > 106 m. We conclude that it is most likely that both the left- and right-handed waves correspond to the low-wavenumber part (close to the cut-off at ΩcHe + +) of the proton-band electromagnetic ion cyclotron (left-handed wave in the plasma frame confined to the frequency range ΩcHe + + < ω < Ωcp) waves propagating in the outwards and inwards directions, respectively. The fact that both wave polarizations are observed at the same time and the identified wave mode has a low group velocity suggests that the double-banded events occur in the source regions of the waves.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Volume of the periodical
656
Issue of the periodical within the volume
Dec 14
Country of publishing house
FR - FRANCE
Number of pages
13
Pages from-to
A19
UT code for WoS article
000730246400023
EID of the result in the Scopus database
2-s2.0-85121625755