HiSS-Cube: A scalable framework for Hierarchical Semi-Sparse Cubes preserving uncertainties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F21%3A00548649" target="_blank" >RIV/67985815:_____/21:00548649 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/21:00357098
Result on the web
<a href="https://doi.org/10.1016/j.ascom.2021.100463" target="_blank" >https://doi.org/10.1016/j.ascom.2021.100463</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ascom.2021.100463" target="_blank" >10.1016/j.ascom.2021.100463</a>
Alternative languages
Result language
angličtina
Original language name
HiSS-Cube: A scalable framework for Hierarchical Semi-Sparse Cubes preserving uncertainties
Original language description
In this study, we developed a new software infrastructure called Hierarchical Semi-Sparse Cube (HiSS-Cube) based on Hierarchical Data Format version 5. HiSS-Cube enables visualization and machine learning using combined heterogeneous data and it was designed to be scalable for big data. HiSS-Cube allows data from multiple domains (imaging, spectral, and timeseries data) to be combined and the construction of a multi-resolution semi-sparse data cube that preserves the uncertainties of scientific measurement at all resolutions. The functionality of HiSSCube was verified based on a subset of the Sloan Digital Sky Survey Stripe 82 survey. We compared the times and volumes for visualizations and machine learning data exported to HiSS-Cube and the original format (FITS). Using these data, we demonstrated that HiSS-Cube is faster by several orders of magnitude. HiSS-Cube supports export to the VOTable format and it is compatible with common Virtual Observatory tools. The source code for our prototype HiSS-Cube is available from GitHub and the data are available from Zenodo.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy and Computing
ISSN
2213-1337
e-ISSN
2213-1345
Volume of the periodical
36
Issue of the periodical within the volume
July
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
100463
UT code for WoS article
000691531100017
EID of the result in the Scopus database
2-s2.0-85106464689