All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tree-based solvers for adaptive mesh refinement code flash - II: radiation transport module TreeRay

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F21%3A00548922" target="_blank" >RIV/67985815:_____/21:00548922 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/21:10439825

  • Result on the web

    <a href="https://doi.org/10.1093/mnras/stab1482" target="_blank" >https://doi.org/10.1093/mnras/stab1482</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/mnras/stab1482" target="_blank" >10.1093/mnras/stab1482</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tree-based solvers for adaptive mesh refinement code flash - II: radiation transport module TreeRay

  • Original language description

    The treatment of radiative transfer with multiple radiation sources is a critical challenge in simulations of star formation and the interstellar medium (ISM). In this paper, we present the novel TREERAY method for solving general radiative transfer problems, based on reverse ray-tracing combined with tree-based accelerated integration. We implement TREERAY in the adaptive mesh refinement code flash, as a module of the tree solver developed by Wunsch et al. However, the method itself is independent of the host code and can be implemented in any grid-based or particle-based hydrodynamics code. A key advantage of TREERAY is that its computational cost is independent of the number of sources, making it suitable for simulations with many point sources (e.g. massive star clusters) as well as simulations where diffuse emission is important. A very efficient communication and tree-walk strategy enable TREERAY to achieve almost ideal parallel scalings. TREERAY can easily be extended with sub-modules to treat radiative transfer at different wavelengths and to implement related physical processes. Here, we focus on ionizing radiation and use the on-the-spot approximation to test the method and its parameters. The ability to set the tree solver time-step independently enables the speedy calculation of radiative transfer in a multiphase ISM, where the hydrodynamic time-step is typically limited by the sound speed of the hot gas produced in stellar wind bubbles or supernova remnants. We show that complicated simulations of star clusters with feedback from multiple massive stars become feasible with TREERAY.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GA19-15008S" target="_blank" >GA19-15008S: Star formation efficiency in massive star clusters</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monthly Notices of the Royal Astronomical Society

  • ISSN

    0035-8711

  • e-ISSN

    1365-2966

  • Volume of the periodical

    505

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    25

  • Pages from-to

    3730-3754

  • UT code for WoS article

    000671481700046

  • EID of the result in the Scopus database