All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spinning test body orbiting around a Schwarzschild black hole: Comparing spin supplementary conditions for circular equatorial orbits

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F21%3A00549683" target="_blank" >RIV/67985815:_____/21:00549683 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1103/PhysRevD.104.024042" target="_blank" >https://doi.org/10.1103/PhysRevD.104.024042</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.104.024042" target="_blank" >10.1103/PhysRevD.104.024042</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spinning test body orbiting around a Schwarzschild black hole: Comparing spin supplementary conditions for circular equatorial orbits

  • Original language description

    The Mathisson-Papapetrou-Dixon (MPD) equations describe the motion of an extended test body in general relativity. This system of equations, though, is underdetermined and has to be accompanied by constraining supplementary conditions, even in its simplest version, which is the pole-dipole approximation corresponding to a spinning test body. In particular, imposing a spin supplementary condition (SSC) fixes the center of mass of the spinning body, i.e., the centroid of the body.In the present study, we examine whether characteristic features of the centroid of a spinning test body, moving in a circular equatorial orbit around a massive black hole, are preserved under the transition to another centroid of the same physical body, governed by a different SSC. For this purpose, we establish an analytical algorithm for deriving the orbital frequency of a spinning body, moving in the background of an arbitrary, stationary, axisymmetric spacetime with reflection symmetry, for the Tulczyjew-Dixon, the Mathisson-Pirani, and the Ohashi-Kyrian-Semerak SSCs. Then, we focus on the Schwarzschild black hole background, and a power series expansion method is developed in order to investigate the discrepancies in the orbital frequencies expanded in power series of the spin among the different SSCs. Lastly, by employing the fact that the position of the centroid and the measure of the spin alters under the centroid's transition, we impose proper corrections to the power expansion of the orbital frequencies, which allows to improve the convergence between the SSCs. Our concluding argument is that when we shift from one circular equatorial orbit to another in the Schwarzschild background, under the change of a SSC, the convergence between the SSCs holds only up to certain powers in the spin expansion, and it cannot be achieved for the whole power series.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

    2470-0029

  • Volume of the periodical

    104

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    024042

  • UT code for WoS article

    000674578400005

  • EID of the result in the Scopus database

    2-s2.0-85110292218