All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

X-ray irradiation of the stellar wind in HMXBs with B supergiants: Implications for ULXs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F22%3A00556343" target="_blank" >RIV/67985815:_____/22:00556343 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/22:00126397

  • Result on the web

    <a href="https://doi.org/10.1051/0004-6361/202142502" target="_blank" >https://doi.org/10.1051/0004-6361/202142502</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202142502" target="_blank" >10.1051/0004-6361/202142502</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    X-ray irradiation of the stellar wind in HMXBs with B supergiants: Implications for ULXs

  • Original language description

    We study the effect of X-ray ionization on the stellar wind of B supergiants. We determine the binary parameters for which the X-ray irradiation significantly influences the stellar wind. This can be conveniently studied in diagrams that plot the optical depth parameter versus the X-ray luminosity. For low optical depths or for high X-ray luminosities, X-ray ionization leads to a disruption in the wind aimed toward the X-ray source. Observational parameters of high-mass X-ray binaries with B-supergiant components appear outside the wind disruption zone. The X-ray feedback determines the resulting X-ray luminosity. We recognize two states with a different level of feedback. For low X-ray luminosities, ionization is weak, and the wind is not disrupted by X-rays and flows at large velocities, consequently the accretion rate is relatively low. On the other hand, for high X-ray luminosities, the X-ray ionization disrupts the flow braking the acceleration, the wind velocity is low, and the accretion rate becomes high. These effects determine the X-ray luminosity of individual binaries. Accounting for the X-ray feedback, estimated X-ray luminosities reasonably agree with observational values. We study the effect of small-scale wind inhomogeneities (clumping), showing that clumping weakens the effect of X-ray ionization by increasing recombination and the mass-loss rate. This effect is particularly important in the region of the so-called bistability jump. We show that ultraluminous X-ray binaries with LX less than or similar to 10(40) erg s(-1) may be powered by accretion of a B-supergiant wind on a massive black hole.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/LM2018140" target="_blank" >LM2018140: e-Infrastructure CZ</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy & Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

    1432-0746

  • Volume of the periodical

    659

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    11

  • Pages from-to

    A117

  • UT code for WoS article

    000769069100007

  • EID of the result in the Scopus database

    2-s2.0-85126831981