Transfer Learning in Large Spectroscopic Surveys
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F22%3A00562021" target="_blank" >RIV/67985815:_____/22:00562021 - isvavai.cz</a>
Result on the web
<a href="http://www.aspbooks.org/publications/532/235.pdf" target="_blank" >http://www.aspbooks.org/publications/532/235.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Transfer Learning in Large Spectroscopic Surveys
Original language description
Transfer learning is a machine learning method that can reuse knowledge across spectroscopic archives with different distributions of observations. We applied transfer learning based on a convolutional neural network to spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope and Sloan Digital Sky Survey archives. Taking advantage of known quasars in LAMOST DR5 version 3, we wanted to discover yet unseen quasars in SDSS DR14. Our transfer learning approach reaches 99.6% precision and 98.9% recall. We found examples of quasars previously classified as stars.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Astronomical Data Analysis Software and System XXX
ISBN
978-1-58381-934-0
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
235-238
Publisher name
Astronomical Society of the Pacific
Place of publication
San Francisco
Event location
on-line
Event date
Nov 8, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—