All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

X-ray polarimetry as a tool to measure the black hole spin in microquasars: simulations of IXPE capabilities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F23%3A00570198" target="_blank" >RIV/67985815:_____/23:00570198 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1093/mnras/stad077" target="_blank" >https://doi.org/10.1093/mnras/stad077</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/mnras/stad077" target="_blank" >10.1093/mnras/stad077</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    X-ray polarimetry as a tool to measure the black hole spin in microquasars: simulations of IXPE capabilities

  • Original language description

    We present simulated observations of an X-ray binary system with the Imaging X-ray Polarimetry Explorer (IXPE), with the aim to study the robustness of black hole spin and geometry measurements using X-ray polarimetry. As a representative example, we used the parameters of GRS 1915 + 105 in its former unobscured, soft state. In order to simulate the polarization properties, we modelled the source emission with a multicolour blackbody accounting for thermal radiation from the accretion disc, including returning radiation. Our analysis shows that the polarimetric observations in the X-ray waveband will be able to estimate both spin and inclination of the system with a good precision [without returning radiation we obtained for the lowest spin Delta a < 0.4 (0.4/0.998 similar to 40 per cent) for spin and Delta i < 30 degrees (30 degrees/70 degrees similar to 43 per cent) for inclination, while for the higher spin values we obtained Delta a < 0.12 ( similar to 12 per cent) for spin and Delta i < 20 degrees (similar to 29 per cent) for inclination, within 1 a errors]. When focusing on the case of returning radiation and treating inclination as a known parameter, we were able to successfully reconstruct spin and disc albedo in Delta a < 0.15 (similar to 15 per cent) interval and Delta albedo < 0.45 (45 per cent) intervals within 1 a errors. We conclude that X-ray polarimetry will be a useful tool to constrain black hole spins, in addition to timing and spectral-fitting methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GX21-06825X" target="_blank" >GX21-06825X: Accreting Black Holes in the new era of X-ray polarimetry missions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monthly Notices of the Royal Astronomical Society

  • ISSN

    0035-8711

  • e-ISSN

    1365-2966

  • Volume of the periodical

    519

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    6138-6148

  • UT code for WoS article

    000931186300005

  • EID of the result in the Scopus database

    2-s2.0-85150949031