Action-angle formalism for extreme mass ratio inspirals in Kerr spacetime
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F23%3A00577751" target="_blank" >RIV/67985815:_____/23:00577751 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:10476915
Result on the web
<a href="https://doi.org/10.1103/PhysRevD.108.044004" target="_blank" >https://doi.org/10.1103/PhysRevD.108.044004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.108.044004" target="_blank" >10.1103/PhysRevD.108.044004</a>
Alternative languages
Result language
angličtina
Original language name
Action-angle formalism for extreme mass ratio inspirals in Kerr spacetime
Original language description
We introduce an action-angle formalism for bounded geodesic motion in Kerr black hole spacetime using canonical perturbation theory. Namely, we employ a Lie series technique to produce a series of canonical transformations on a Hamiltonian function describing geodesic motion in Kerr background written in Boyer-Lindquist coordinates to a Hamiltonian system written in action-angle variables. This technique allows us to produce a closed-form invertible relation between the Boyer-Lindquist variables and the action-angle ones, while it generates in analytical closed form all the characteristic functions of the system as well. The expressed in the action-angle variable Hamiltonian system is employed to model an extreme mass ratio inspiral (EMRI), i.e., a binary system where a stellar compact object inspirals into a supermassive black hole due to gravitational radiation reaction. We consider the adiabatic evolution of an EMRI, for which the energy and angular momentum fluxes are computed by solving the Teukolsky equation in the frequency domain. To achieve this a new Teukolsky equation solver code was developed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/EF19_073%2F0016935" target="_blank" >EF19_073/0016935: Grant schemes at Charles University</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Volume of the periodical
108
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
044004
UT code for WoS article
001146267300004
EID of the result in the Scopus database
2-s2.0-85167880630