Eruptive events with exceptionally bright emission in H I Ly-α observed by the Metis coronagraph
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00585061" target="_blank" >RIV/67985815:_____/24:00585061 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0353557" target="_blank" >https://hdl.handle.net/11104/0353557</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202347741" target="_blank" >10.1051/0004-6361/202347741</a>
Alternative languages
Result language
angličtina
Original language name
Eruptive events with exceptionally bright emission in H I Ly-α observed by the Metis coronagraph
Original language description
For this work, we analyzed six coronal mass ejections observed by Metis between April and October 2021, which are characterized by a very strong H I Ly-alpha emission. We studied in particular the morphology, kinematics, and the temporal and radial evolution of the emission of such events, focusing on the brightest UV features. The kinematics of the eruptive events under consideration were studied by determining the height-time profiles of the brightest parts on the Metis plane of the sky. Furthermore, the 3D positions in the heliosphere of the coronal mass ejections were determined by employing co-temporal images, when available, from two other coronagraphs: LASCO/C2 on board SOHO, and COR2 on board STEREO-A. In three cases, the most likely source region on the solar surface could be identified. Finally, the radiometrically calibrated Metis images of the bright UV features were analyzed to provide estimates of their volume and density. From the kinematics and radiometric analysis, we obtained indications of the temperatures of the bright UV cores of these events. These results were then compared with previous studies with the UVCS spectrocoronagraph. The analysis of these strong UV-emitting features associated with coronal mass ejections demonstrates the capabilities of the current constellation of space coronagraphs, Metis, LASCO/C2, and COR2, in providing a complete characterization of the structure and dynamics of eruptive events in their propagation phase from their inception up to several solar radii. Furthermore, we show how the unique capabilities of the Metis instrument to observe these events in both the H I Ly-alpha line and polarized VL radiation allow plasma diagnostics on the thermal state of these events.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/GA22-34841S" target="_blank" >GA22-34841S: Science with Solar Orbiter: Focusing on eruptive processes</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Volume of the periodical
683
Issue of the periodical within the volume
March
Country of publishing house
FR - FRANCE
Number of pages
23
Pages from-to
A191
UT code for WoS article
001186725700006
EID of the result in the Scopus database
2-s2.0-85188164394