All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Silicate mineralogy from Vis-NIR reflectance spectra

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00586546" target="_blank" >RIV/67985815:_____/24:00586546 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985831:_____/24:00586546

  • Result on the web

    <a href="https://hdl.handle.net/11104/0354008" target="_blank" >https://hdl.handle.net/11104/0354008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/PSJ/ad2685" target="_blank" >10.3847/PSJ/ad2685</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Silicate mineralogy from Vis-NIR reflectance spectra

  • Original language description

    The asteroid composition is the key to understanding the origin and evolution of the solar system. The composition is imprinted at specific wavelengths of the asteroid reflectance spectra. We wish to find the optimal wavelength range and step of reflectance spectra that contain sufficient information about S-complex asteroids while keeping the data volume as low as possible. We especially aim for the ASPECT instrument on board the Milani/Hera CubeSat that will observe the S-complex binary asteroid (65803) Didymos–Dimorphos. We use labeled reflectance spectra of the most common silicate found in meteorites, namely olivine, orthopyroxene, clinopyroxene, and their mixtures. The spectra are interpolated to various wavelength grids. We use convolutional neural networks and train them with the labeled interpolated reflectance spectra. The reliability of the network outputs is evaluated using standard regression metrics. We do not find any significant dependence between the error of the model predictions and normalization position, fineness of coverage within the 1 μm band, and wavelength step up to 50 nm. High-precision predictions of the olivine and orthopyroxene modal abundances are obtained using spectra that cover wavelengths from 750 to 1050 nm and from 750 to 1250 nm, respectively. For high-precision predictions of the olivine chemical composition, the spectra should cover wavelengths from 750 to 1550 nm. The orthopyroxene chemical composition can be estimated from spectra that cover wavelengths from 750 to 1350 nm. We design a simple web interface through which everybody can use the pretrained models.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    The Planetary Science Journal

  • ISSN

    2632-3338

  • e-ISSN

    2632-3338

  • Volume of the periodical

    5

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    58

  • UT code for WoS article

    001194851800001

  • EID of the result in the Scopus database

    2-s2.0-85189427128