All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Investigating the consistency of the shape and flux of X-ray reflection spectra in the hard state with an accretion disk reaching close to the black hole

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00601310" target="_blank" >RIV/67985815:_____/24:00601310 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0358568" target="_blank" >https://hdl.handle.net/11104/0358568</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202450352" target="_blank" >10.1051/0004-6361/202450352</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Investigating the consistency of the shape and flux of X-ray reflection spectra in the hard state with an accretion disk reaching close to the black hole

  • Original language description

    Context. The observed spectra from black hole (BH) X-ray binaries (XRBs) typically consist of two primary components. A multitemperature blackbody originating from the accretion disk in the soft X-ray, and a power law-like component in the hard X-ray, due to the Comptonization of soft photons by the hot corona. The illumination of the disk by the corona gives rise to another key component known as reflection. A fraction of the incident hard X-ray radiation is naturally absorbed and re-emitted as a blackbody at lower energies and referred to as the reprocessed blackbody. Aims. For densities relevant to XRBs and typical ionization values, the reprocessed blackbody may become significant in the soft X-ray region (approximately 0.1-1.0 keV) and should be noticeable in the observed spectra as a consequence of reflection. The absence of any blackbody component in the low/hard state of a BH XRB may not be consistent with the reflection of highly irradiating flux, observed as a power law from an appropriately dense disk of XRB. Methods. We focus on the low/hard state of the BH XRB MAXI J1820+070. In contrast to previous works, we simultaneously fit the shape and flux of the reflection spectra. This allowed us to estimate the correct density and ionization of the slab as well as the corresponding reprocessed blackbody. Results. Our fitting of the representative observation of the BH XRB low/hard state suggests that the disk may, in principle, extend very close to the BH, even though the reprocessed thermal emission (due to disk illumination) remains cold (and thus low) enough to be consistent with the data in contrast to the results of a previous study. The inner reflection component is highly ionized and its fit is primarily driven by its contribution to the continuum, rather than by the shape of the relativistic iron line. Conclusions. The reprocessed blackbody cannot help determine whether the disk extends close to the BH or not in the hard state. For this specific observation, the flux in inner reflection component turns out to be quite low with respect to the outer reflection or power law. The outflowing slab corona covering the inner region of the disk could be the plausible geometry of the source, with the underlying disk approaching near to the BH.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GX21-06825X" target="_blank" >GX21-06825X: Accreting Black Holes in the new era of X-ray polarimetry missions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy & Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

    1432-0746

  • Volume of the periodical

    691

  • Issue of the periodical within the volume

    Oct.

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    14

  • Pages from-to

    A85

  • UT code for WoS article

    001345759900008

  • EID of the result in the Scopus database

    2-s2.0-85208728872