X-ray reverberation as an explanation for UV/optical variability in nearby Seyferts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00601311" target="_blank" >RIV/67985815:_____/24:00601311 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0358566" target="_blank" >https://hdl.handle.net/11104/0358566</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202348603" target="_blank" >10.1051/0004-6361/202348603</a>
Alternative languages
Result language
angličtina
Original language name
X-ray reverberation as an explanation for UV/optical variability in nearby Seyferts
Original language description
Context. Active galactic nuclei (AGNs) are known to be variable across all wavelengths. Significant observational efforts have been invested in the last decade in studying their ultraviolet (UV) and optical variability. Long and densely sampled, multi-wavelength monitoring campaigns of numerous Seyfert galaxies have been conducted with the aim of determining the X-ray/UV/optical continuum time lags. Time-lag studies can be used to constrain theoretical models. The observed time lags can be explained by thermal reprocessing of the X-rays illuminating the accretion disc (known as the X-ray reverberation model). However, the observed light curves contain more information that can be used to further constrain physical models. Aims. Our primary objective is to investigate whether, in addition to time lags, the X-ray reverberation model can also explain the UV/optical variability amplitude of nearby Seyferts. Methods. We measured the excess variance of four sources (namely Mrk 509, NGC 4151, NGC 2617, and Mrk 142) as a function of wavelength using data from archival long, multi-wavelength campaigns with Swift, and ground-based telescopes. We also computed the model excess variance in the case of the X-ray reverberation model by determining the disc's transfer function and assuming a bending power law for the X-ray power spectrum. We tested the validity of the model by comparing the measured and model variances for a range of accretion rates and X-ray source heights. Results. Our main result is that the X-ray thermal reverberation model can fit both the continuum, UV/optical time lags, as well as the variance (i.e. the variability amplitude) in these AGNs, for the same physical parameters. Our results suggest that the accretion disc is constant and that all the observed UV/optical variations, on timescales of days and up to a few weeks, can be fully explained by the variable X-rays as they illuminate the accretion disc.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Volume of the periodical
691
Issue of the periodical within the volume
Oct.
Country of publishing house
FR - FRANCE
Number of pages
16
Pages from-to
A60
UT code for WoS article
001345759900010
EID of the result in the Scopus database
2-s2.0-85208285096